Binomial Theorem

• The coefficients of the expansions of a binomial are arranged in an array. This array is called Pascal's triangle. It can be written as

Index	Coefficient(s)
0	⁰ C ₀
	(=1)
1	¹ C ₀ ¹ C ₁
	(=1) $(=1)$
2	$^{2}C_{0}$ $^{2}C_{1}$ $^{2}C_{2}$
	(=1) $(=2)$ $(=1)$
3	$^{3}C_{0}$ $^{3}C_{1}$ $^{3}C_{2}$ $^{3}C_{3}$
	(=1) $(=3)$ $(=3)$ $(=1)$
4	$^{4}C_{0}$ $^{4}C_{1}$ $^{4}C_{2}$ $^{4}C_{3}$ $^{4}C_{4}$
	(=1) $(=4)$ $(=6)$ $(=4)$ $(=1)$
5	

• **General Term:** The $(r + 1)^{th}$ term (denoted by T_{r+1}) is known as the general term of the expansion $(a + b)^n$ and it is given by $T_{r+1} = {}^n C_r a^{n-r} b^r$

Example 1: In the expansion of $(5x - 7y)^9$, find the general term?

Solution:
$$T_{r+1} = {}^{9}C_{r} (5x)^{9-r} (-7y)^{r} = (-1)^{r} {}^{9}C_{r} (5x)^{9-r} (7y)^{r}$$

- Middle term in the expansion of $(a + b)^n$:
- o If n is even, then the number of terms in the expansion will be n+1. Since n is even, n+1 is odd. Therefore, the middle term is $\left(\frac{n}{2}+1\right)^{\text{th}}$ term.
- o If n is odd, then n+1 is even. So, there will be two middle terms in the expansion. They $\operatorname{are}\left(\frac{n+1}{2}\right)^{\operatorname{th}}$ term $\operatorname{and}\left(\frac{n+1}{2}+1\right)^{\operatorname{th}}$ term.
- In the expansion of $\left(x + \frac{1}{x}\right)^{2n}$, where $x \neq 0$, the middle term is $\left(\frac{2n}{2} + 1\right)^{\text{th}}$, i.e., $(n + 1)^{\text{th}}$ term [since 2n is even].

It is given by ${}^{2n}C_n x^n \left(\frac{1}{x}\right)^n = {}^{2n}C_n$ which is a constant.

This term is called the term independent of x or the constant term.

Note: In the expansion of $(a + b)^n$, r^{th} term from the end = $(n - r + 2)^{\text{th}}$ term from the beginning

Example 2: In the expansion of $\left(\frac{x^3}{4} - \frac{12}{x}\right)^4$, find the middle term and find the term which is independent of x.

Solution: As 4 is even, the middle term in the expansion of $\left(\frac{x^3}{4} - \frac{12}{x}\right)^4$ is the $\left(\frac{4}{2} + 1\right)^{th}$ term, i.e., 3^{rd} term, which is given by

$$T_3 = T_{2+1} = {}^{4}C_2 \left(\frac{x^3}{4}\right)^2 \left(\frac{-12}{x}\right)^2$$
$$= 6 \times \frac{x^6}{16} \times \frac{144}{x^2}$$
$$= 54 \times x^4$$

Now, we will find the term in the expansion which is independent of x. Suppose (r + 1)th term is independent of x.

The (r + 1)th term in the expansion of $(a + b)^n$ is given by $T_{r+1} = {}^nC_r a^{n-r} b^r$

Hence, the (r + 1)th term in the expansion of (r + 1)th is given by